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INVERSE I TO I TRANSFORMATION

SUMMARY: It is shown that the second adiabatic invariant I may
be defined as a function of the magnitude of the field B and
the shell parameter L. A method is developed to obtain
solutions for I in terms of arbitrary B and L. Results

are tested and discussed.



INTRODUCTION

The wide acceptance of McIlwain's magnetic coordinates B and L
(McIlwain 1961) and their almost exclusive use in the mapping of geo-
magnetically trapped particles, has resulted in the gradual disuse of the
second adiabatic or longitudinal invariant I. Many studies pertaining
to the motion or the spatial distribution of trapped particles, employ
predominantly the parameters B and L in developing their theories
(Galbraith 1965), analysing phenomena (Hess 1964), and presenting ex-
perimental data (McIlwain 1963).

Already a great amount of data have been given exclusively in L
without any reference to I. This trend will probably prevail even more,
as new and faster methods of obtaining L are being devised and used
(Stern 1965), making its calculation entirely independent of I.

When considering however topics like the distribution, the shell
configuration or the drift of these particles, it might be desirable,
if not advantageous, to use I in addition to B and L or instead of L.

In most such instances the integral invariant will not be readily available
and will have to be obtained by scme computational method.

The conventional computation of I may not be of help,because it can
only be performed, if the appropriate geographic coordinates are known, in which
case one must resort to the relatively slow process of integrating numeri-
cally along a field llne ,an expression equivalent to that defining I:

I-= j (1 - 32 )ds @
where B(s) is the fleld strength along a line of force, B and B' are the
magnitudes of the field at the conjugate mirror points, and ds is the
differential path length on a field line from Bm to 3;. Also it is not unlikely,

that sometimes a line integration to determine L has already been performed and



we just wish to save another integration when deriving 'I'.
This paper will present a simple way, by which 'I' may be obtained

from the known quantities B and L only, without the need of integration.

METHOD

Let us define the integral invariant as a functlon of the magnetic .
parameters B and L:
I=r(B, L) (2)
and let us stipulate that an acceptable solution to this function should
be positive, real and single valued.

Recalling from McIlwain (1961) that:

e e (3)
where:
F<f§>*=1+e><p <2aqn> m=0,1...9 (%)
M m
and:
o =1in % (5)

¥Equation (4) is an approximation to a high order of accuracy, where the
coefficients a have been evaluated for different ranges of

o (Table 1).




we require that a solution to (2) must be derivable from (3).

Writing out equation (3) and rearranging, we get:

NERNN
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By defining g as a function of g = g(I,B) we have reduced the problem

to the level of plain matrix manipulation, where:

m m=0,1...n
. = YR -
Bl m %1 i=1, ---, n+1 (7)
n=9

will give us a system of i = n + 1 equations, for which the values of

o may be autonomously generated, that is, arbitrarily assigned in such a
way, as to be evenly distributed over the range of the given set of
coefficients am. Since equation (7) is monotonic within the fixed range,
the Bis are nonsingular. Hence it can be shown (appendix) that for all
pairs of:(ei, ai) of a domain, some new set of coefficients bm exists,

that wili make the inverse relation hold true:

m=0,1...n
ay = mes? i=1], --~,n+1 (8)
n=9

Combining (5) and (8) and writing the equation in a fom corresponding

to (3) we have:

I_;E = exp Cﬂbmﬂm) (9)



We shall call this expression the "Inverse Dipole Function" and define

it as:
where:

F§l <%§§> = exp <&bnﬁni> m=0,1--9 (11)
and:

8 =1n<£133ﬁ- 1) (12)

Expression (2) is now sufficiently determined from (10) by:
1/3
Ty 6]
£ (BL)=| 3 F v (13)

To obtain the new coefficients bm’ the corresponding B's were computed
through equation (7) for a selected set of (n + 1) ¢'s, belonging to

a given range of am. Using these values of 4 and g, the resulting
linear system of equation (8) was solved for o . Table 2 gives the

values of bm calculated by this method for the indicated domains of a -

CONCLUSIONS AND RESULTS

We have shown that a solution to I = £(B, L), equation (2), exists
in the form of the Inverse Dipole Function, which does satisfy the
imposed requirement of derivability. When conforming with the expressed
stipulations, the second adiabatic invariant may unambiguously be
obtained for any arbituary B and L with great accuracy and speed and

without integration, from:




o [a e @) )

where:
P (22 exp (o g™ m=0,1---9 (11)
and:
s -1 (2. 1) (12)

In similarity to (4), Equation (11) is also an approximation,
but with a higher degree of accuracy. Tests and recomputations of g
and L from the calculated 'I' have shown the average error to be less
than 10 © with a maximum around 10 *.

Sample computations are given in Table 4. They were handled by a

program written in Fortran IV for the IBM TO94, Moonlight System.

Actual running time per 'I' computation accounted to a very small fraction

of a second in all domains.

(@)}




APPENDIX (I)

Given a polynomial of the nth degree in & that is monotonic in the interval

Lq®, qJ, for which the coefficients a_ exist:
m

n
(1) B =8g(%) =3 & o n=9
m=0
we select (n+l) points {og5 aps -+ “n+l} such that:

1, n+l

1

{_al} C[a*: g i

and calculate from (A) the pairs:

This gives (n+l) points lying on g(a).
Further, from the monotonicity of g, it can be expected that, if the ais

are distinct, so are the B{S'

Now let us write (B) as:
(C) (Bl) al)) (62’ QQ)’ L (Bn+l, a'rl+\].)
and regard (C) as giving us (n+l) points on the function:
(D) a=g" (8)
Accordingly, this is a unique polynomial of nth degree passing through these

points, i.e.:

n m -1

(E) a= 3 bm B =g (g) n=9
mn=0
Now if we change our selection of the {al’ ags e an+l}’ we could expect

very nearly the same polynomisl in (E) again, provided the {ai}'s were well

dispersed over the interval [ *, ™.




Of course, if one selected the Q{s all clustered together, at one end of the
interval ﬂa*, on**] for example, the Bj'_s would be clustered together also,
and some difficulty might be experienced in solving for the BI;IS s, which in
that case might be different. But with a reasonable selection of the {aj'_s'(,
the values for f{ Bml will be approximastely the same, their difference

remaining insignificantly small.
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